ОБ ОДНОМ ОБОБЩЕНИИ ПРЯМОЙ СИМСОНА

В. А. Смирнов

Московский педагогический государственный университет

e-mail: v-a-smirnov@mail.ru

И. М. Смирнова

Московский педагогический государственный университет

e-mail: i-m-smirnova@yandex.ru

Аннотация: в работе рассматриваются прямая Симсона и её обобщение, которые могут быть изучены с учащимися 8-го класса углублённого уровня при проведении учебных курсов внеурочной деятельности.

Ключевые слова: треугольник, обобщённая прямая Симсона.

ON ONE GENERALIZATION OF SIMSON'S STRAIGHT LINE

V. A. Smirnov

Moscow State Pedagogical University

e-mail: v-a-smirnov@mail.ru

I. M. Smirnova

Moscow State Pedagogical University

e-mail: i-m-smirnova@yandex.ru

Adstract: the paper considers Simson's straight line and its generalization, which can be studied with students of 8th grade students of advanced level in extracurricular activity courses.

Keywords: triangle, generalized Simson's straight line.

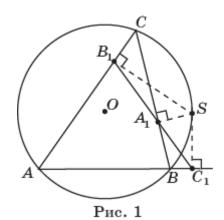
Прямая Симсона — одна из замечательных линий треугольника. Для её рассмотрения с учащимися 8-го класса достаточно сведений об окружности, описанной около треугольника, и об углах, вписанных в окружность, которые не выходят за рамки основного общего образования.

В настоящей работе мы рассмотрим прямую Симсона и её обобщение, которые могут быть изучены с учащимися 8-го класса углублённого уровня обучения при проведении учебных курсов внеурочной деятельности.

Доказательства, связанные с прямой Симсона, можно предложить учащимся в качестве упражнений на применение свойств углов и треугольников, вписанных в окружность.

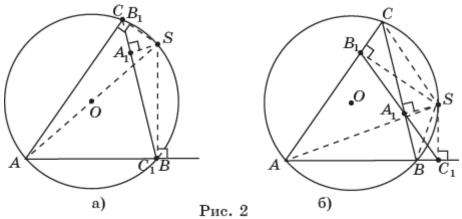
Напомним определение прямой Симсона [1].

Для треугольника ABC рассмотрим описанную окружность. Для произвольной точки S этой окружности опустим перпендикуляры SA_1 , SB_1 , SC_1 соответственно на прямые BC, AC, AB. Тогда основания A_1 , B_1 , C_1 этих перпендикуляров будут принадлежать одной прямой. Эта прямая называется прямой Симсона (рис. 1), названная в честь шотландского математика Роберта Симсона (1687-1768).



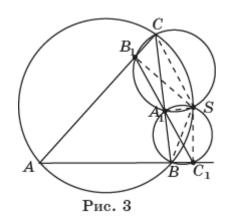
Докажем это. Рассмотрим случай, когда точка S принадлежит дуге окружности, стягивающей сторону BC треугольника ABC, а точка A_1 принадлежит этой стороне.

В случае, если прямая AS проходит через центр O описанной окружности, то точки B_1 и C_1 совпадают с вершинами соответственно C и B треугольника ABC (рис. 2, a). Следовательно, точки A_1 , B_1 , C_1 принадлежат прямой BC.



В противном случае, один из углов ABS или ACS — острый, а другой — тупой (рис. 2, б). Из этого следует, что точки B_1 и C_1 будут расположены по разные стороны от прямой BC. Для того чтобы доказать, что точки A_1 , B_1 и C_1 принадлежат одной прямой, достаточно проверить, что $\angle CA_1B_1 = \angle BA_1C_1$.

Опишем окружности с диаметрами CS и BS (рис. 3).

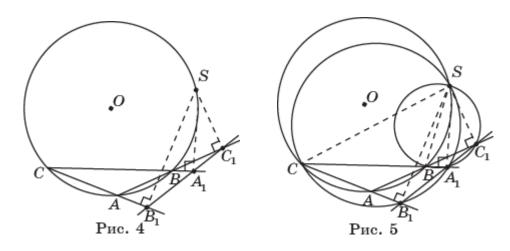


Так как $\angle CB_1S = \angle CA_1S = 90^\circ$, то точки A_1 и B_1 принадлежат окружности с диаметром CS. $\angle CA_1B_1 = \angle CSB_1$, как вписанные углы, опирающиеся на одну дугу $\widecheck{CB_1}$ окружности. $\angle CSB_1 = 90^\circ - \angle SCB_1 = 90^\circ - \angle C_1BS = \angle BSC_1$. Так как $\angle BA_1S = \angle BC_1S = 90^\circ$, то точки A_1 и C_1 принадлежат окружности с диаметром BS. $\angle BSC_1 = \angle BA_1C_1$, как вписанные углы, опирающиеся на одну дугу $\widecheck{BC_1}$ окружности. Следовательно, окончательно получаем, что $\angle CA_1B_1 = \angle BA_1C_1$. Значит, точки A_1 , B_1 , C_1 принадлежат одной прямой.

Верно и обратное. А именно, если основания перпендикуляров A_1 , B_1 , C_1 , опущенных из точки S на прямые соответственно BC, AC и AB треугольника ABC, принадлежат одной прямой, то эта точка принадлежит окружности, описанной около треугольника ABC.

Действительно, опишем окружности с диаметрами A_1C_1 и B_1S . $\angle BSC_1 = \angle BA_1C_1$, как вписанные углы, опирающиеся на одну дугу BC_1 . $\angle CSB_1 = \angle CA_1B_1$, как вписанные углы, опирающиеся на одну дугу CB_1 . $\angle BA_1C_1 = \angle CA_1B_1$, как вертикальные углы. Следовательно, $\angle BSC_1 = \angle CSB_1$, $\angle BSC = \angle C_1SB_1 = 180^\circ - \angle BAC$. Значит, точка S принадлежит окружности, описанной около треугольника ABC.

Аналогичным образом рассматривается случай, когда точка S принадлежит дуге окружности, стягивающей сторону BC треугольника ABC, а точка A_1 принадлежит продолжению этой стороны (рис. 4).

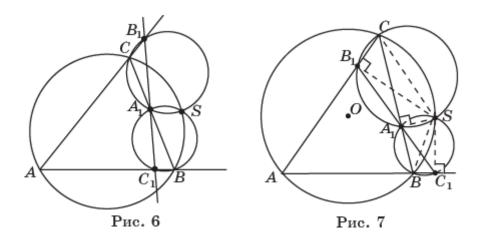


Чтобы доказать, что точки A_1 , B_1 и C_1 принадлежат одной прямой, достаточно проверить, что $\angle CA_1B_1 = 180^\circ - \angle BA_1C_1$. Для этого опишем окружности с диаметрами CS и BS (рис. 5). Имеем $\angle CB_1S = \angle CA_1S = 90^\circ - \angle SCA = \angle SBA - 90^\circ = \angle SBC_1 = 180^\circ - \angle BA_1C_1$.

Перейдём теперь к рассмотрению обобщения прямой Симсона.

Для треугольника ABC рассмотрим описанную окружность и точку S на этой окружности. Выберем какую-нибудь точку A_1 на прямой BC. Через точки S, A_1 , B проведём окружность. Обозначим C_1 её точку пересечения с прямой AB. Через точки S, A_1 , C проведём окружность. Обозначим B_1 её точку пересечения с прямой AC. Тогда точки A_1 , B_1 , C_1

будут принадлежать одной прямой. Эту прямую будем называть обобщением прямой Симсона (рис. 6).



Покажем, что прямая Симсона является частным случаем этой Действительно, если точка A_1 является перпендикуляра, опущенного из точки S на прямую AB, то SB и SCявляются диаметрами соответствующих окружностей. Следовательно, точки C_1 и B_1 являются основаниями перпендикуляров, опущенных из точки S на прямые соответственно AB и AC (рис. 7).

Рассмотрим теперь общий случай расположения точки A_1 на отрезке BC и точки S на соответствующей дуге окружности.

Заметим, что в случае, если $\angle A_1SC = \angle ACB$, то прямая AC касается окружности, проходящей через точки S, A_1 , C. Значит, точки C и B_1 совпадают. В этом случае $\angle A_1SB = \angle BSC - \angle A_1SC = 180^\circ - \angle BAC \angle A_1SC = 180^{\circ} - \angle BAC - \angle ACB = \angle ABC$. Следовательно, прямая ABкасается окружности, проходящей через точки S, A_1, B . Значит, точки B и C_1 совпадают (рис. 8).

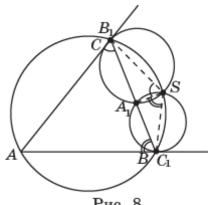
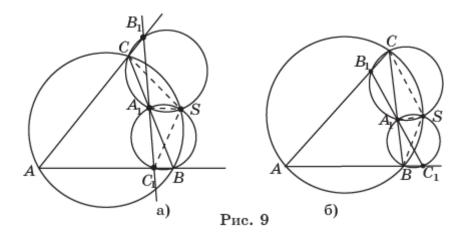


Рис. 8

Если $\angle A_1SC < \angle ACB$, то $\angle A_1SB > \angle ABC$. В этом случае точка B_1 принадлежит продолжению отрезка AC, а точка C_1 – внутренняя точка отрезка AB (рис. 9, a).

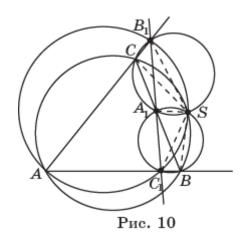


Если $\angle A_1SC > \angle ACB$, то $\angle A_1SB < \angle ABC$. В этом случае точка B_1 – внутренняя точка отрезка AC, а точка C_1 принадлежит продолжению отрезка AB (рис. 9, б).

И в том и другом случаях точки B_1 и C_1 будут расположены по разные стороны от прямой BC. Следовательно, для того чтобы доказать, что точки A_1 , B_1 и C_1 принадлежат одной прямой, достаточно проверить, что $\angle CA_1B_1 = \angle BA_1C_1$.

Прежде, чем это доказывать, докажем следующее свойство окружности, связанной с обобщённой прямой Симсона.

Окружность, проходящая через точки A, B_1 , C_1 , проходит и через точку S. Для этого достаточно доказать, что $\angle B_1SC_1=180^\circ-\angle B_1AC_1$ (рис. 10).



Имеем $\angle B_1SA_1=180^\circ-\angle B_1CA_1$, как вписанные углы, опирающиеся на дуги окружности, вместе составляющие всю окружность. $\angle A_1SC_1=\angle A_1BC_1$, как вписанные углы, опирающиеся на дугу $\overrightarrow{A_1C_1}$ окружности. Следовательно, $\angle B_1SC_1=\angle B_1SA_1+\angle A_1SC_1=180^\circ-\angle BAC=180^\circ-\angle B_1AC_1$.

Перейдём теперь к доказательству равенства углов CA_1B_1 и BA_1C_1 . Имеем $\angle B_1SC_1 = \angle CSB_1 = 180^\circ - \angle CB_1S - \angle B_1CS = \angle AC_1S - 180^\circ + \angle ACS = \angle AC_1S - \angle ABS = \angle BSC_1 = \angle BA_1C_1$.

Верно и обратное. А именно, если точки A_1 , B_1 , C_1 , принадлежащие соответственно сторонам BC, AC, AB треугольника ABC или их продолжениям, принадлежат одной прямой, то окружности, проходящие через точки A_1 , B, C_1 и A_1CB_1 пересекаются в точке S, принадлежащей окружности, описанной около треугольника ABC.

Действительно, в этом случае $\angle BSA_1 = 180^\circ - \angle A_1C_1B = \angle AC_1B_1$. $\angle SCA_1 = \angle CB_1A_1$, как вписанные углы, опирающиеся на одну дугу $\overrightarrow{CA_1}$. Следовательно, $\angle BSC = \angle BSA_1 + \angle SCA_1 = \angle AC_1B_1 + \angle CB_1A_1 = 180^\circ - \angle BAC$. Значит, точка S принадлежит окружности, описанной около треугольника ABC.

Аналогичным образом рассматривается случай, когда точка A_1 принадлежит продолжению отрезка BC.

Обобщённую прямую Симсона можно построить, используя компьютерную программу GeoGebra [2]. Она позволяет убедиться в том, что для различных треугольников ABC и различных расположениях точек S и A_1 , точки A_1 , B_1 , C_1 принадлежат одной прямой.

Литература

- 1. Зетель С. И. Новая геометрия треугольника. М.: Учпедгиз, 1962.
- 2. Смирнов В. А., Смирнова И. М. Геометрия с GeoGebra. Планиметрия. М.: Прометей, 2018.